SAMHD1 Restricts HIV-1 Replication and Regulates Interferon Production in Mouse Myeloid Cells
نویسندگان
چکیده
SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+) T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP), blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.
منابع مشابه
Moderate Restriction of Macrophage-Tropic Human Immunodeficiency Virus Type 1 by SAMHD1 in Monocyte-Derived Macrophages
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated...
متن کاملThe SAMHD1 knockout mouse model: in vivo veritas?
SAMHD1, a dNTP hydrolase mutated in the autoimmune encephalopathy Aicardi-Goutières syndrome, restricts HIV replication in non-dividing human cells by reducing intracellular deoxyribonucleotide pools. New work in The EMBO Journal unexpectedly finds neither autoimmune disease nor increased murine retrovirus infection in SAMHD1 knockout mice, but improved replication of a mutant HIV with increase...
متن کاملHost Factor SAMHD1 Restricts DNA Viruses in Non-Dividing Myeloid Cells
SAMHD1 is a newly identified anti-HIV host factor that has a dNTP triphosphohydrolase activity and depletes intracellular dNTP pools in non-dividing myeloid cells. Since DNA viruses utilize cellular dNTPs, we investigated whether SAMHD1 limits the replication of DNA viruses in non-dividing myeloid target cells. Indeed, two double stranded DNA viruses, vaccinia and herpes simplex virus type 1, a...
متن کاملImmune Activation Influences SAMHD1 Expression and Vpx-mediated SAMHD1 Degradation during Chronic HIV-1 Infection
SAMHD1 restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid cells and CD4+ T cells, while Vpx can mediate SAMHD1 degradation to promote HIV-1 replication. Although the restriction mechanisms of SAMHD1 have been well-described, SAMHD1 expression and Vpx-mediated SAMHD1 degradation during chronic HIV-1 infection were poorly understood. Flow cytometric analysis was used to ...
متن کاملThe Fourth Major Restriction Factor Against HIV/SIV
Human and simian immunodeficiency viruses (HIV/SIVs) carry a unique set of accessory proteins that enhance virus replication in an optimized manner. These viral proteins specific to HIV/SIVs are designated Vif, Vpx, Vpr, Vpu, and Nef, and are functional in certain cell types (Malim and Emerman, 2008; Fujita et al., 2010). While viruses of the HIV-1 group do not encode Vpx, the other HIV-2/SIVs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014